Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
ABSTRACT Comprehensively identifying the loci shaping trait variation has been challenging, in part because standard approaches often miss many types of genetic variants. Structural variants (SVs), especially transposable elements (TEs), are likely to affect phenotypic variation but we lack methods that can detect polymorphic SVs and TEs using short‐read sequencing data. Here, we used a whole genome alignment between two maize genotypes to identify polymorphic SVs and then genotyped a large maize diversity panel for these variants using short‐read sequencing data. After characterising SV variation in the panel, we identified SV polymorphisms that are associated with life history traits and genotype‐by‐environment (GxE) interactions. While most of the SVs associated with traits contained TEs, only two of the SVs had boundaries that clearly matched TE breakpoints indicative of a TE insertion, while the other polymorphisms were likely caused by deletions. One of the SVs that appeared to be caused by a TE insertion had the most associations with gene expression compared to other trait‐associated SVs. All of the SVs associated with traits were in linkage disequilibrium with nearby single nucleotide polymorphisms (SNPs), suggesting that the approach used here did not identify unique associations that would have been missed in a SNP association study. Overall, we have (1) created a technique to genotype SV polymorphisms across a large diversity panel using support from genomic short‐read sequencing alignments and (2) connected this presence/absence SV variation to diverse traits and GxE interactions.more » « less
-
Suh, Alexander; Chapman, Tracey (Ed.)Abstract It is unclear how mobile DNA sequences (transposable elements, hereafter TEs) invade eukaryotic genomes and reach stable copy numbers, as transposition can decrease host fitness. This challenge is particularly stark early in the invasion of a TE family at which point hosts may lack the specialized machinery to repress the spread of these TEs. One possibility (in addition to the evolution of host regulation of TEs) is that TE families may evolve to preferentially insert into chromosomal regions that are less likely to impact host fitness. This may allow the mean TE copy number to grow while minimizing the risk for host population extinction. To test this, we constructed simulations to explore how the transposition probability and insertion preference of a TE family influence the evolution of mean TE copy number and host population size, allowing for extinction. We find that the effect of a TE family’s insertion preference depends on a host’s ability to regulate this TE family. Without host repression, a neutral insertion preference increases the frequency of and decreases the time to population extinction. With host repression, a preference for neutral insertions minimizes the cumulative deleterious load, increases population fitness, and, ultimately, avoids triggering an extinction vortex.more » « less
-
Malik, Harmit Singh; Mank, Judith (Ed.)In contrast with nuclear genes that are passed on through both parents, mitochondrial genes are maternally inherited in most species, most of the time. The genetic conflict stemming from this transmission asymmetry is well-documented, and there is an abundance of population-genetic theory associated with it. While occasional or aberrant paternal inheritance occurs, there are only a few cases where exclusive paternal inheritance of mitochondrial genomes is the evolved state. Why this is remains poorly understood. By examining commonalities between species with exclusive paternal inheritance, we discuss what they may tell us about the evolutionary forces influencing mitochondrial inheritance patterns. We end by discussing recent technological advances that make exploring the causes and consequences of paternal inheritance feasible.more » « less
-
VITTE, Clémentine (Ed.)Structural differences between genomes are a major source of genetic variation that contributes to phenotypic differences. Transposable elements, mobile genetic sequences capable of increasing their copy number and propagating themselves within genomes, can generate structural variation. However, their repetitive nature makes it difficult to characterize fine-scale differences in their presence at specific positions, limiting our understanding of their impact on genome variation. Domesticated maize is a particularly good system for exploring the impact of transposable element proliferation as over 70% of the genome is annotated as transposable elements. High-quality transposable element annotations were recently generated forde novogenome assemblies of 26 diverse inbred maize lines. We generated base-pair resolved pairwise alignments between the B73 maize reference genome and the remaining 25 inbred maize line assemblies. From this data, we classified transposable elements as either shared or polymorphic in a given pairwise comparison. Our analysis uncovered substantial structural variation between lines, representing both simple and complex connections between TEs and structural variants. Putative insertions in SNP depleted regions, which represent recently diverged identity by state blocks, suggest some TE families may still be active. However, our analysis reveals that within these recently diverged genomic regions, deletions of transposable elements likely account for more structural variation events and base pairs than insertions. These deletions are often large structural variants containing multiple transposable elements. Combined, our results highlight how transposable elements contribute to structural variation and demonstrate that deletion events are a major contributor to genomic differences.more » « less
An official website of the United States government
